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Abstract
Graph neural architecture search (NAS) has emerged as a promis-

ing approach for autonomously designing graph neural network

architectures by leveraging correlations between graphs and archi-

tectures. However, existing methods merely rely on correlations,

which may be spurious and vary across distributions. This reliance,

without considering causal graph-architecture relationships, limits

their ability to generalize under distribution shifts that are ubiqui-

tous in real-world graph scenarios. In this paper, we propose to han-

dle the distribution shifts in NAS process by exploiting the causal
graph-architecture relationship to search for optimal architectures

that can generalize under distribution shifts. Key challenges remain

unexplored: discovering causal graph-architecture relationships

with stable cross-distribution predictive abilities, and leveraging

them to handle distribution shifts. To address these challenges,

we propose a novel approach, Causal-aware Graph Neural Archi-

tecture Search (CARNAS), which is capable of capturing causal

graph-architecture relationship during NAS process and discover-

ing optimal graph architecture under distribution shifts.We propose

Disentangled Causal Subgraph Identification to extract causal sub-

graphs with stable predictive power across distributions, followed

by Graph Embedding Intervention to intervene on these subgraphs

in latent space by preserving essential features while filtering out

non-causal elements, and Invariant Architecture Customization

to enhance their causal invariance for optimizing graph architec-

tures. Extensive experiments on synthetic and real-world datasets

show that CARNAS enhances out-of-distribution generalization by

uncovering causal graph-architecture relationships during NAS.
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1 Introduction
Graph neural architecture search (Graph NAS), aiming at automat-

ing the designs of GNN architectures for different graphs, has shown

great success by exploiting the correlations between graphs and

architectures. Present approaches [8, 18, 28] leverage a rich search

space filled with GNN operations and employ strategies like re-

inforcement learning and continuous optimization algorithms to

pinpoint an optimal architecture for specific datasets, aiming to de-

code the natural correlations between graph data and their ideal ar-

chitectures. Based on the independently and identically distributed

(I.I.D) assumption on training and testing data, existing methods

assume the graph-architecture correlations are stable across graph

distributions.

Nevertheless, distribution shifts are ubiquitous and inevitable

in real-world graph scenarios, particularly evident in applications

existing with numerous unforeseen and uncontrollable hidden fac-

tors like drug discovery, in which the availability of training data is

limited, and the complex chemical properties of different molecules

lead to varied interaction mechanisms [15]. Consequently, GNN
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models developed for such purposes must be generalizable enough

to handle unavoidable variations in data distribution between train-

ing and testing sets, underlining the critical need for models that

can adapt to and perform reliably under such varying conditions.

Existing Graph NAS methods primarily rely on correlations be-

tween graphs and architectures during the search process. These

correlations, while effective in the training distribution, may be

spurious and tend to vary with distribution shifts. Without specifi-

cally considering the intrinsic causal relationships between graph

structures and architectures, the search process unintendedly cap-

tures these spurious patterns that are specific to training data. Con-

sequently, although achieving good performance on the training

distribution, the identified patterns fail to generalize when the

underlying data distribution changes in the test set, resulting in

significant performance degradation under distribution shifts.

In this paper, we study the problem of graph neural architecture

search under distribution shifts by capturing the causal relationship
between graphs and architectures to search for the optimal graph

architectures that can generalize under distribution shifts. The

problem is highly non-trivial with the following challenges:

• How to discover the causal graph-architecture relationship that

has stable predictive abilities across distributions?

• How to handle distribution shifts with the discovered causal

graph-architecture relationship to search the generalized graph

architectures?

To address these challenges, we propose the Causal-aware Graph

NAS (CARNAS), which is able to capture the causal relationship,

stable to distribution shifts, between graphs and architectures, and

thus handle the distribution shifts in the graph architecture search

process. Specifically, we design a Disentangled Causal Subgraph
Identification module, which employs disentangled GNN layers to

obtain node and edge representations, then further derive causal

subgraphs based on the importance of each edge. This module en-

hances the generalization by deeply exploring graph features as

well as latent information with disentangled GNNs, thereby en-

abling a more precise extraction of causal subgraphs, carriers of

causally relevant information, for each graph instance. Following

this, our Graph Embedding Intervention module employs another

shared GNN to encode the derived causal subgraphs and non-causal

subgraphs in the same latent space, where we perform interven-

tions on causal subgraphs with non-causal subgraphs. Additionally,

we ensure the causal subgraphs involve principal features by en-

gaging the supervised classification loss of causal subgraphs into

the training objective. We further introduce the Invariant Archi-
tecture Customization module, which addresses distribution shifts

not only by constructing architectures for each graph with their

causal subgraph but also by integrating a regularizer on simulated

architectures corresponding to those intervention graphs, aiming

to reinforce the causal invariant nature of causal subgraphs de-

rived in module 1. We remark that the classification loss for causal

subgraphs in module 2 and the regularizer on architectures for

intervention graphs in module 3 help with ensuring the causality

between causal subgraphs and the customized architecture for a

graph instance. Moreover, by incorporating them into the training

and search process, we make the Graph NAS model intrinsically

interpretable to some degree. Empirical validation across both syn-

thetic and real-world datasets underscores the remarkable out-of-

distribution generalization capabilities of CARNAS over existing

baselines. Detailed ablation studies further verify our designs. The

contributions of this paper are summarized as follows:

• We are the first to study graph neural architecture search under

distribution shifts from the causal perspective, by proposing

the causal-aware graph neural architecture search (CARNAS),

that integrates causal inference into graph neural architecture

search, to the best of our knowledge.

• We propose three modules: disentangled causal subgraph identi-

fication, graph embedding intervention, and invariant architec-

ture customization, offering a nuanced strategy for extracting

and utilizing causal graph-architecture relationships, which

is stable under distribution shifts, thereby enhancing model’s

capability of out-of-distribution generalization.

• Extensive experiments on both synthetic and real-world datasets

confirm that CARNAS significantly outperforms existing base-

lines, showcasing its efficacy in improving graph classification

accuracy across diverse datasets, and validating the superior

out-of-distribution generalization capabilities of our methods.

2 Preliminary
2.1 Graph NAS under distribution shifts
Denote G and Y as the graph and label space. We consider a train-

ing graph dataset G𝑡𝑟 = {(𝐺𝑖 , 𝑌𝑖 )}𝑁𝑡𝑟

𝑖=1
and a testing graph dataset

G𝑡𝑒 = {(𝐺𝑖 , 𝑌𝑖 )}𝑁𝑡𝑒

𝑖=1
, where 𝐺𝑖 ∈ G, 𝑌𝑖 ∈ Y, 𝑁𝑡𝑟 and 𝑁𝑡𝑒 represent

the number of graph instances in training set and testing set, respec-

tively. The generalization of graph classification under distribution

shifts can be formed as:

Problem 1. We aim to find the optimal prediction model 𝐹 ∗ (·) :
G −→ Y that performs well on G𝑡𝑒 when there is a distribution shift
between training and testing data, i.e. 𝑃 (G𝑡𝑟 ) ≠ 𝑃 (G𝑡𝑒 ):

𝐹 ∗ (·) = argmin

𝐹
E(𝐺,𝑌 )∼𝑃 (G𝑡𝑒 ) [ℓ (𝐹 (𝐺), 𝑌 ) | G𝑡𝑟 ] , (1)

where ℓ (·, ·) : Y × Y −→ R is a loss function.

Graph NAS methods search the optimal GNN architecture 𝐴∗

from the search space A, and form the complete model 𝐹 together

with the learnable parameters 𝜔 . Unlike most existing works using

a fixed GNN architecture for all graphs, [37] is the first to customize

a GNN architecture for each graph, supposing that the architecture

only depends on the graph. We follow the idea and inspect deeper

concerning the graph neural architecture search process.

2.2 Causal view of the Graph NAS process
Causal approaches are largely adopted when dealing with out-of-

distribution (OOD) generalization by capturing the stable causal

structures or patterns in input data that influence the results [21].

While in normal graph neural network cases, previous work that

studies the problem from a causal perspective mainly considers the

causality between graph data and labels [23, 46].

Causal analysis in Graph NAS. Based on the known that different
GNN architectures suit different graphs [5, 51] and inspired by [47],

we analyze the potential relationships between graph instance 𝐺 ,



Causal-aware Graph Neural Architecture Search
under Distribution Shifts KDD ’25, August 3–7, 2025, Toronto, ON, Canada

causal subgraph 𝐺𝑐 , non-causal subgraph 𝐺𝑠 and optimal architec-

ture 𝐴∗ for 𝐺 in the graph neural architecture search process:

• 𝐺𝑐 → 𝐺 ← 𝐺𝑠 indicates that two disjoint parts, causal sub-

graph𝐺𝑐 and non-causal subgraph𝐺𝑠 , together form the input

graph 𝐺 .

• 𝐺𝑐 → 𝐴∗ represents our assumption that there exists the causal

subgraph which solely determines the optimal architecture 𝐴∗

for input graph𝐺 . Taking the Spurious-Motif dataset [53] as an

example, [37] discovers that different shapes of graph elements

prefer different architectures.

• 𝐺𝑐 𝐺𝑠 means that there are potential probabilistic de-

pendencies between 𝐺𝑐 and 𝐺𝑠 [33, 34], which can make up

spurious correlations between the non-causal subgraph𝐺𝑠 and

the optimal architecture 𝐴∗.

Intervention. Inspired by the ideology of invariant learning [1,

3, 17], that forms different environments to abstract the invariant

features, we do interventions on causal subgraph 𝐺𝑐 by adding dif-

ferent spurious (non-causal) subgraphs to it, and therefore simulate

different environments for a graph instance 𝐺 .

2.3 Problem formalization
Based on the above analysis, we propose to search for a causal-

aware GNN architecture for each input graph. To be specific, we

target to guide the search for the optimal architecture 𝐴∗ by identi-

fying the causal subgraph𝐺𝑐 in the Graph NAS process. Therefore,

Problem 1 is transformed into the following concrete task as in

Problem 2.

Problem 2. We systematize model 𝐹 : G −→ Y into three modules,
i.e. 𝐹 = 𝑓𝐶 ◦ 𝑓𝐴 ◦ 𝑓𝑌 , in which 𝑓𝐶 (𝐺) = 𝐺𝑐 : G −→ G𝑐 abstracts the
causal subgraph𝐺𝑐 from input graph𝐺 , where causal subgraph space
G𝑐 is a subset of G, 𝑓𝐴 (𝐺𝑐 ) = 𝐴 : G𝑐 −→ A customizes the GNN
architecture 𝐴 for causal subgraph𝐺𝑐 , and 𝑓𝑌 (𝐺,𝐴) = 𝑌 : G ×A −→
Y outputs the prediction 𝑌 . Further, we derive the following objective
function:

min

𝑓𝐶 ,𝑓𝐴,𝑓𝑌
𝜎L𝑝𝑟𝑒𝑑 + (1 − 𝜎)L𝑐𝑎𝑢𝑠𝑎𝑙 , (2)

L𝑝𝑟𝑒𝑑 =

𝑁𝑡𝑟∑︁
𝑖=1

ℓ

(
𝐹𝑓𝐶 (𝐺𝑖 ),𝑓𝐴 (𝐺𝑐𝑖 ),𝑓𝑌 (𝐺𝑖 ,𝐴𝑖 ) (𝐺𝑖 ) , 𝑌𝑖

)
, (3)

whereL𝑝𝑟𝑒𝑑 guarantees the final prediction performance of the whole
model, L𝑐𝑎𝑢𝑠𝑎𝑙 is a regularizer for causal constraints and 𝜎 is the
hyper-parameter to adjust the optimization of those two parts.

3 Method
We present our proposed method in this section based on the above

causal view. Firstly, we present the disentangled causal subgraph

identification module to obtain the causal subgraph for searching

optimal architecture in Section 3.1. Then, we propose the inter-

vention module in Section 3.2, to help with finding the invariant

subgraph that is causally correlated with the optimal architectures,

making the NAS model intrinsically interpretable to some degree.

In Section 3.3, we introduce the simulated customization module

which aims to deal with distribution shift by customizing for each

graph and simulating the situation when the causal subgraph is

affected by different spurious parts. Finally, we show the total in-

variant learning and optimization procedure in Section 3.4. To more

rigorously establish ourmethod, we provide a theoretical analysis in

Appendix A about the problem of identifying and leveraging causal

graph-architecture relationship to find the optimal architecture.

3.1 Disentangled causal subgraph identification
This module utilizes disentangled GNN layers to capture different

latent factors of the graph structure and further split the input

graph instance 𝐺 into two subgraphs: causal subgraph 𝐺𝑐 and

non-causal subgraph 𝐺𝑠 . Specifically, considering an input graph

𝐺 = (V, E), its adjacency matrix is D ∈ {0, 1} |V |× |V | , where
D𝑖, 𝑗 = 1 denotes that there exists an edge between node 𝑉𝑖 and

node 𝑉𝑗 , while D𝑖, 𝑗 = 0 otherwise. Since optimizing a discrete bi-

nary matrix M ∈ {0, 1} |V |× |V | is unpractical due to the enormous

number of subgraph candidates [53], and learningM separately for

each input graph fails in generalizing to unseen test graphs [30],

we adopt shared learnable disentangled GNN layers to comprehen-

sively unveil the latent graph structural features and better abstract

causal subgraphs. Firstly, we denote 𝑄 as the number of latent fea-

tures taken into account, and learn 𝑄-chunk node representations

by 𝑄 GNNs:

Z(𝑙 ) = ∥𝑄
𝑞=1

GNN0

(
Z(𝑙−1)𝑞 ,D

)
, (4)

where Z𝑙𝑞 is the 𝑞-th chunk of the node representation at 𝑙-th layer,

D is the adjacency matrix, and ∥ denotes concatenation. Then, we
generate the edge importance scores SE ∈ R | E |×1 with an MLP:

SE = MLP

(
Z(𝐿)𝑟𝑜𝑤 ,Z

(𝐿)
𝑐𝑜𝑙

)
, (5)

where Z(𝐿) ∈ R |V |×𝑑 is the node representations after 𝐿 layers of

disentangled GNN, and Z(𝐿)𝑟𝑜𝑤 ,Z
(𝐿)
𝑐𝑜𝑙

are the subsets of Z(𝐿) contain-
ing the representations of row nodes and column nodes of edges

E respectively. After that, we attain the causal and non-causal

subgraphs by picking out the important edges through SE :

E𝑐 = Top𝑡 (SE ), E𝑠 = E − E𝑐 , (6)

where E𝑐 and E𝑠 denotes the edge sets of𝐺𝑐 and𝐺𝑠 , respectively,
and Top𝑡 (·) selects the top 𝑡-percentage of edges with the largest

edge score values.

3.2 Graph embedding intervention
After obtaining the causal subgraph 𝐺𝑐 and non-causal subgraph

𝐺𝑠 of an input graph 𝐺 , we use another shared GNN1 to encode

those subgraphs so as to do interventions in the same latent space:

Zc = GNN1 (𝐺𝑐 ) , Zs = GNN1 (𝐺𝑠 ) . (7)

Moreover, a readout layer is placed to aggregate node-level repre-

sentations into graph-level representations:

Hc = READOUT (Zc) , Hs = READOUT (Zs) . (8)

Supervised classification for causal subgraphs. We claim that the

causal subgraph 𝐺𝑐 inferred in Section 3.1 for finding the optimal

GNN architecture is supposed to contain the main characteristic of

graph𝐺 ’s structure as well as capture the essential part for the final



KDD ’25, August 3–7, 2025, Toronto, ON, Canada Peiwen Li et al.

Graph
Embedding Intervention

Disentangled Causal 
Subgraph Identification

Invariant
Architecture Customization

		𝐎𝟏
		𝐎𝟐
		𝐎𝟑

		𝐎𝟏
		𝐎𝟐
		𝐎𝟑

		𝐎𝟏
		𝐎𝟐
		𝐎𝟑

		𝐎𝟏
		𝐎𝟐
		𝐎𝟑

		𝐎𝟏
		𝐎𝟐
		𝐎𝟑

		𝐎𝟏
		𝐎𝟐
		𝐎𝟑

		𝐎𝟏
		𝐎𝟐
		𝐎𝟑

		𝐎𝟏
		𝐎𝟐
		𝐎𝟑

spurious 
subgraph
												𝑮𝐬

causal 
subgraph
													𝑮𝐜

𝒄

		𝒔𝟏 		𝒗𝟐

		𝒗𝟏

		𝒗𝟑

		𝒔𝟑

		𝒔𝟐

𝒀𝒄" 𝒀#

𝓛𝒂𝒓𝒄𝒉

learnable

vectors of 

operations

		𝐨𝐩𝟐

		𝐨𝐩𝟏

𝓛𝒐𝒑

Graph 𝑮

𝒐𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆	𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 = 𝟏 − 𝝈 (𝓛𝒄𝒑𝒓𝒆𝒅(𝒀𝒄",𝒀) + 𝜽𝟏𝓛𝒂𝒓𝒄𝒉 + 𝜽𝟐𝓛𝒐𝒑) + 𝝈𝓛𝒑𝒓𝒆𝒅(𝒀#, 𝒀)

edge 

mask

identification

network 𝑮𝑵𝑵𝟎

shared 

graph 

encoder 

𝑮𝑵𝑵𝟏

𝑮

Figure 1: The framework of our proposed method CARNAS. As for an input graph 𝐺 , the disentangled causal subgraph
identificationmodule abstracts its causal subgraph𝐺𝑐 with disentangled GNN layers. Then, in the graph embedding intervention
module, we conduct several interventions on𝐺𝑐 with non-causal subgraphs in latent space and obtainL𝑐𝑝𝑟𝑒𝑑 from the embedding
of 𝐺𝑐 in the meanwhile. After that, the invariant architecture customization module aims to deal with distribution shift by
customizing architecture from 𝐺𝑐 to attain 𝑌 , L𝑝𝑟𝑒𝑑 , and form L𝑎𝑟𝑐ℎ , L𝑜𝑝 to further constrain the causal invariant property of
𝐺𝑐 . Blue lines present the prediction approach and grey lines show other processes in the training stage. Additionally, green
lines denote the updating process.

graph classification predicting task. Hence, we employ a classifier

on Hc to construct a supervised classification loss:

L𝑐𝑝𝑟𝑒𝑑 =

𝑁𝑡𝑟∑︁
𝑖=1

ℓ

(
𝑌𝑐𝑖 , 𝑌𝑖

)
, 𝑌𝑐𝑖 = Φ (Hc𝑖 ) , (9)

where Φ is a classifier, 𝑌𝑐𝑖 is the prediction of graph 𝐺𝑖 ’s causal

subgraph 𝐺𝑐𝑖 and 𝑌𝑖 is the ground truth label of 𝐺𝑖 .

Interventions by non-causal subgraphs. Based on subgraphs’ em-

bedding Hc and Hs, we formulate the intervened embedding Hv
in the latent space. Specifically, we collect all the representations

of non-causal subgraphs {Hs𝑖 }, 𝑖 ∈ [1, 𝑁𝑡𝑟 ], corresponding to each

input graph {𝐺𝑖 }, 𝑖 ∈ [1, 𝑁𝑡𝑟 ], in the current batch, and randomly

sample 𝑁𝑠 of them as the candidates {Hs 𝑗 }, 𝑗 ∈ [1, 𝑁𝑠 ] to do inter-

vention with. As for a causal subgraph𝐺𝑐 with representation Hc,
we define the representation under an intervention as:

𝑑𝑜 (𝑆 = 𝐺𝑠 𝑗 ) : Hv 𝑗 = (1 − 𝜇) · Hc + 𝜇 · Hs 𝑗 , 𝑗 ∈ [1, 𝑁𝑠 ], (10)

in which 𝜇 ∈ (0, 1) is the hyper-parameter to control the intensity

of an intervention.

3.3 Invariant architecture customization
After obtaining graph representations Hc and Hv 𝑗 , 𝑗 ∈ [1, 𝑁𝑠 ], we
introduce the method to construct a specific GNN architecture from

a graph representation on the basis of differentiable NAS [28].

Architecture customization. To begin with, we denote the space

of operator candidates as O and the number of architecture layers

as 𝐾 . Then, the ultimate architecture 𝐴 can be represented as a

super-network:

𝑔𝑘 (x) =
| O |∑︁
𝑢=1

𝛼𝑘𝑢𝑜𝑢 (x), 𝑘 ∈ [1, 𝐾], (11)

where x is the input to layer 𝑘 , 𝑜𝑢 (·) is the operator from O, 𝛼𝑘𝑢 is

the mixture coefficient of operator 𝑜𝑢 (·) in layer 𝑘 , and 𝑔𝑘 (𝑥) is the
output of layer 𝑘 . Thereat, an architecture 𝐴 can be represented

as a matrix A ∈ R𝐾×|O | , in which A𝑘,𝑢 = 𝛼𝑘𝑢 . We learn these

coefficients from graph representation H via trainable prototype

vectors op𝑘𝑢 (𝑢 ∈ [1, |O|], 𝑘 ∈ [1, 𝐾]), of operators:

𝛼𝑘𝑢 =

exp

(
op𝑘𝑢

𝑇
H
)

∑ | O |
𝑢′=1 exp

(
op𝑘
𝑢′
𝑇
H
) . (12)

In addition, the regularizer for operator prototype vectors:

L𝑜𝑝 =
∑︁
𝑘

∑︁
𝑢,𝑢′∈[1, | O | ],𝑢≠𝑢′

cos(op𝑘𝑢 , op𝑘𝑢′ ), (13)

where cos(·, ·) is the cosine distance between two vectors, is en-

gaged to avoid the mode collapse, following the exploration in [37].
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Architectures from causal subgraph and intervention graphs. So far
we form the mapping of 𝑓𝐴 : G→ A in Problem 2. As for an input

graph𝐺 , we get its optimal architecture𝐴𝑐 with thematrixAc based
on its causal subgraph’s representation Hc through equation (12),

while for each intervention graph we have Av 𝑗 based on Hv 𝑗 , 𝑗 ∈
[1, 𝑁𝑠 ] similarly.

The customized architecture 𝐴𝑐 is used to produce the ultimate

prediction of input graph 𝐺 by 𝑓𝑌 : G × A → Y in Problem 2, and

we formulate the main classification loss as:

L𝑝𝑟𝑒𝑑 =

𝑁𝑡𝑟∑︁
𝑖=1

ℓ (𝑌𝑖 , 𝑌𝑖 ), 𝑌𝑖 = 𝑓𝑌 (𝐺𝑖 , 𝐴𝑐𝑖 ) . (14)

Furthermore, we regard each Av 𝑗 , 𝑗 ∈ [1, 𝑁𝑠 ] as an outcome

when causal subgraph 𝐺𝑐 is in a specific environment (treating

the intervened part, i.e. non-causal subgraphs, as different environ-

ments). Therefore, the following variance regularizer is proposed

as a causal constraint to compel the inferred causal subgraph𝐺𝑐 to

have the steady ability to solely determine the optimal architecture

for input graph instance 𝐺 :

L𝑎𝑟𝑐ℎ =
1

𝑁𝑡𝑟

𝑁𝑡𝑟∑︁
𝑖=1

1𝑇 · Var𝑖 · 1,Var𝑖 = var

({
Av𝑖 𝑗

})
, 𝑗 ∈ [1, 𝑁𝑠 ],

(15)

where var(·) calculates the variance of a set of matrix, 1𝑇 · Var𝑖 · 1
represents the summation of elements in matrix Var𝑖 .

3.4 Optimization framework
Up to now, we have introduced 𝑓𝐶 : G −→ G𝑐 in section 3.1, 𝑓𝐴 :

G𝑐 −→ A in section 3.2 and 3.3, 𝑓𝑌 : G × A −→ Y in section 3.3, and

whereby deal with Problem 2. To be specific, the overall objective

function in equation (2) is as below:

L𝑎𝑙𝑙 = 𝜎L𝑝𝑟𝑒𝑑 + (1 − 𝜎)L𝑐𝑎𝑢𝑠𝑎𝑙 ,
L𝑐𝑎𝑢𝑠𝑎𝑙 = L𝑐𝑝𝑟𝑒𝑑 + 𝜃1L𝑎𝑟𝑐ℎ + 𝜃2L𝑜𝑝 ,

(16)

where 𝜃1, 𝜃2 and 𝜎 are hyper-parameters. Additionally, we adopt a

linearly growing 𝜎𝑝 corresponding to the epoch number 𝑝 as:

𝜎𝑝 = 𝜎𝑚𝑖𝑛 + (𝑝 − 1)
𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛

𝑃
, 𝑝 ∈ [1, 𝑃], (17)

where 𝑃 is the maximum number of epochs. In this way, we can

dynamically adjust the training key point in each epoch by focus-

ing more on the causal-aware part (i.e. identifying suitable causal

subgraph and learning vectors of operators) in the early stages and

focusingmore on the performance of the customized super-network

in the later stages. We show the dynamic training process and how

𝜎𝑝 improve the training and convergence efficiency in Section 5.3.

The overall framework and optimization procedure of the proposed

CARNAS are summarized in Figure 1 and Algorithm 1.

4 Experiments
In this section, we present the comprehensive results of our exper-

iments on both synthetic and real-world datasets to validate the

effectiveness of our approach. We also conduct a series of ablation

studies to thoroughly examine the contribution of the components

within our framework. At the end of this section, we analyze both

time and parameter complexity.

Algorithm 1 The overall algorithm of CARNAS

Require: Training Dataset G𝑡𝑟 ,
Hyper-parameters 𝑡 in Eq. (6), 𝜇 in Eq. (10), 𝜃1, 𝜃2 in Eq. (16)

1: Initialize all trainable parameters

2: for 𝑝 = 1, . . . , 𝑃 do
3: Set 𝜎𝑝 as Eq. (17)

4: Derive causal and non-causal subgraphs as Eq. (4) (5) (6)

5: Calculate graph representations of causal and non-causal

subgraphs as Eq. (7) (8)

6: Calculate L𝑐𝑝𝑟𝑒𝑑 using Eq. (9)

7: Sample 𝑁𝑠 non-causal subgraphs as candidates

8: for causal subgraph 𝐺𝑐 of graph 𝐺 in G𝑡𝑟 do
9: Do interventions on 𝐺𝑐 in latent space as Eq. (10)

10: Calculate architecture matrix Ac and {Av 𝑗 } from causal

subgraph and their intervention graphs as Eq. (12)

11: end for
12: Calculate L𝑜𝑝 using Eq. (13)

13: Calculate L𝑝𝑟𝑒𝑑 using Eq. (11) (14)

14: Calculate L𝑎𝑟𝑐ℎ using Eq. (15))

15: Calculate the overall loss L𝑎𝑙𝑙 using Eq. (16)
16: Update parameters using gradient descends

17: end for

4.1 Experiment setting
4.1.1 Setting. To ensure the reliability and reproducibility, we exe-

cute each experiment ten times using distinct random seeds and

present the average results along with their standard deviations.

4.1.2 Baselines. We compare our model with 12 baselines from

the following two different categories:

• Manually design GNNs.We incorporate widely recognized

architectures: GCN [16], GAT [42], GIN [50], SAGE [12], and

GraphConv [32], into our search space as well as baseline meth-

ods. Apart from that, we include MLP and two recent advance-

ments: ASAP [40] and DIR [47], which is specifically proposed

for out-of-distribution generalization.

• Graph Neural Architecture Search. For classic NAS, we
compare with DARTS [28], a differentiable architecture search

method, and random search. For graph NAS, we explore a rein-
forcement learning-based method GNAS [8], and PAS [44] that

is specially designed for graph classification tasks. Addition-

ally, we compare two state-of-the-art graph NAS methods that

are specially designed for non-i.i.d. graph datasets, including

GRACES [37] and DCGAS [52].

4.1.3 Definition of search space. The number of layers in our model

is predetermined before training, and the type of operator for each

layer can be selected from our defined operator search space O.
We incorporate widely recognized architectures GCN, GAT, GIN,

SAGE, GraphConv, and MLP into our search space as candidate

operators in our experiments. This allows for the combination of

various sub-architectures within a single model, such as using GCN

in the first layer and GAT in the second layer. Furthermore, we

consistently use standard global mean pooling at the end of the

GNN architecture to generate a global embedding.
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4.2 On synthetic datasets
4.2.1 Datasets. The synthetic dataset, Spurious-Motif [37, 47, 53],
encompasses 18,000 graphs, each uniquely formed by combining a

base shape (denoted as Tree, Ladder, orWheel with 𝑆 = 0, 1, 2) with a

motif shape (represented as Cycle, House, or Crane with 𝐶 = 0, 1, 2).

Notably, the classification of each graph relies solely on its motif

shape, despite the base shape typically being larger. This dataset is

particularly designed to study the effect of distribution shifts, with

a distinct bias introduced solely on the training set through the

probability distribution 𝑃 (𝑆) = 𝑏×I(𝑆 = 𝐶) + 1−𝑏
2
×I(𝑆 ≠ 𝐶), where

𝑏 modulates the correlation between base and motif shapes, thereby

inducing a deliberate shift between the training set and testing

set, where all base and motif shapes are independent with equal

probabilities. We choose 𝑏 = 0.7/0.8/0.9, enabling us to explore

our model’s performance under various significant distributional

variations. The effectiveness of our approach is measured using

accuracy as the evaluation metric on this dataset.

4.2.2 Results. Table 1 presents the experimental results on three

synthetic datasets, revealing that our model significantly outper-

forms all baseline models across different scenarios.

Specifically, we observe that the performance of all GNN models

is particularly poor, suggesting their sensitivity to spurious corre-

lations and their inability to adapt to distribution shifts. However,

DIR [47], designed specifically for non-I.I.D. datasets and focus-

ing on discovering invariant rationale to enhance generalizability,

shows pretty well performance compared to most of the other GNN

models. This reflects the feasibility of employing causal learning to

tackle generalization issues.

Moreover, NAS methods generally yield slightly better outcomes

than manually designed GNNs in most scenarios, emphasizing the

significance of automating architecture by learning the correlations

between input graph data and architecture to search for the opti-

mal GNN architecture. Notably, methods specifically designed for

non-I.I.D. datasets, such as GRACES [37], DCGAS [52], and our

CARNAS, exhibit significantly less susceptibility to distribution

shifts compared to NAS methods intended for I.I.D. data.

Among these, our approach consistently achieves the best perfor-

mance across datasets with various degrees of shifts, demonstrating

the effectiveness of our method in enhancing Graph NAS perfor-

mance, especially in terms of out-of-distribution generalization,

which is attained by effectively capturing causal invariant sub-

graphs to guide the architecture search process, and filtering out

spurious correlations meanwhile.

4.3 On real-world datasets
4.3.1 Datasets. The real-world datasets OGBG-Mol*, including
Ogbg-molhiv, Ogbg-molbace, and Ogbg-molsider [13, 48], feature

41127, 1513, and 1427 molecule graphs, respectively, aimed at molec-

ular property prediction. The division of the datasets is based on

scaffold values, designed to segregate molecules according to their

structural frameworks, thus introducing a significant challenge to

the prediction of graph properties. The predictive performance of

our approach across these diverse molecular structures and proper-

ties is measured using ROC-AUC as the evaluation metric.

Table 1: The test accuracy of all methods on synthetic dataset
Spurious-Motif. Values after ± denote the standard devia-
tions. The best results overall are in bold and the best results
of baselines in each category are underlined separately.

Method 𝑏 = 0.7 𝑏 = 0.8 𝑏 = 0.9

GCN 48.39±1.69 41.55±3.88 39.13±1.76
GAT 50.75±4.89 42.48±2.46 40.10±5.19
GIN 36.83±5.49 34.83±3.10 37.45±3.59
SAGE 46.66±2.51 44.50±5.79 44.79±4.83
GraphConv 47.29±1.95 44.67±5.88 44.82±4.84
MLP 48.27±1.27 46.73±3.48 46.41±2.34
ASAP 54.07±13.85 48.32±12.72 43.52±8.41
DIR 50.08±3.46 48.22±6.27 43.11±5.43

Random 45.92±4.29 51.72±5.38 45.89±5.09
DARTS 50.63±8.90 45.41±7.71 44.44±4.42
GNAS 55.18±18.62 51.64±19.22 37.56±5.43
PAS 52.15±4.35 43.12±5.95 39.84±1.67
GRACES 65.72±17.47 59.57±17.37 50.94±8.14
DCGAS 87.68±6.12 75.45±17.40 61.42±16.26

CARNAS 94.41±4.58 88.04±13.77 87.15±11.85

4.3.2 Results. Results from real-world datasets are detailed in Ta-

ble 2, where our CARNAS model once again surpasses all baselines

across three distinct datasets, showcasing its ability to handle com-

plex distribution shifts under various conditions.

For manually designed GNNs, the optimal model varies across

different datasets: GIN achieves the best performance on Ogbg-

molhiv, GCN excels on Ogbg-molsider, and GraphConv leads on

Ogbg-molbace. This diversity in performance confirms a crucial

hypothesis in our work, that different GNN models are predisposed

to perform well on graphs featuring distinct characteristics.

In the realm of NAS models, we observe that DARTS and PAS,

proposed for I.I.D. datasets, perform comparably tomanually crafted

GNNs, whereas GRACES, DCGAS and our CARNAS , specifically

designed for non-I.I.D. datasets outshine other baselines. Our ap-

proach reaches the top performance across all datasets, with a

particularly remarkable breakthrough on Ogbg-molsider, highlight-

ing our method’s superior capability in adapting to and excelling

within diverse data environments.

We provide reproducibility details in Appendix B, including

dataset details, and hyperparameter settings.

5 Deeper Analysis
5.1 Ablation study

Setups. In this section, we conduct ablation studies to examine

the effectiveness of each vital component in our framework. Specif-

ically, we compare the following ablated variants of our model:

• ‘CARNAS w/o L𝑎𝑟𝑐ℎ ’ removes L𝑎𝑟𝑐ℎ from the overall loss in

Eq. (16). In this way, the contribution of the graph embedding
intervention module together with the invariant architecture
customization module to improve generalization performance
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Table 2: The test ROC-AUC of all methods on real-world
datasets OGBG-Mol*. Values after ± denote the standard devi-
ations. The best results overall are in bold and the best results
of baselines in each category are underlined separately.

Method HIV SIDER BACE

GCN 75.99±1.19 59.84±1.54 68.93±6.95
GAT 76.80±0.58 57.40±2.01 75.34±2.36
GIN 77.07±1.49 57.57±1.56 73.46±5.24
SAGE 75.58±1.40 56.36±1.32 74.85±2.74
GraphConv 74.46±0.86 56.09±1.06 78.87±1.74
MLP 70.88±0.83 58.16±1.41 71.60±2.30
ASAP 73.81±1.17 55.77±1.18 71.55±2.74
DIR 77.05±0.57 57.34±0.36 76.03±2.20

DARTS 74.04±1.75 60.64±1.37 76.71±1.83
PAS 71.19±2.28 59.31±1.48 76.59±1.87
GRACES 77.31±1.00 61.85±2.58 79.46±3.04
DCGAS 78.04±0.71 63.46±1.42 81.31±1.94

CARNAS 78.33±0.64 83.36±0.62 81.73±2.92

by restricting the causally invariant nature for constructing

architectures of the causal subgraph is removed.

• ‘CARNAS w/o L𝑐𝑝𝑟𝑒𝑑 ’ removes L𝑐𝑝𝑟𝑒𝑑 , thereby relieving the

supervised restriction on causal subgraphs for encapsulating

sufficient graph features, which is contributed by disentangled
causal subgraph identification module together with the graph
embedding interventionmodule to enhance the learning of causal
subgraphs.

• ‘CARNAS w/o L𝑎𝑟𝑐ℎ & L𝑐𝑝𝑟𝑒𝑑 ’ further removes both of them.

Besides, we also compare with the best performance in baselines.

Results. From Figure 2, we have the following observations. First

of all, our proposed CARNAS outperforms all the variants as well as

the best-performed baseline on all datasets, demonstrating the effec-

tiveness of each component of our proposed method. Secondly, the

performance of ‘CARNAS w/o L𝑎𝑟𝑐ℎ ’, ‘CARNAS w/o L𝑐𝑝𝑟𝑒𝑑 ’ and
‘CARNAS w/o L𝑎𝑟𝑐ℎ & L𝑐𝑝𝑟𝑒𝑑 ’ dropped obviously on all datasets

comparing with the full CARNAS , which validates that our pro-

posed modules help the model to identify stable causal components

from comprehensive graph feature and further guide the Graph

NAS process to enhance its performance significantly especially un-

der distribution shifts. What’s more, though ‘CARNAS w/o L𝑎𝑟𝑐ℎ ’
decreases, its performance still surpasses the best results in base-

lines across all datasets, indicating that even if the invariance of the

influence of the causal subgraph on the architecture is not strictly

restricted by L𝑎𝑟𝑐ℎ , it is effective to use merely the causal subgraph

guaranteed by L𝑐𝑝𝑟𝑒𝑑 to contain the important information of the

input graph and use it to guide the architecture search.

5.2 Case study
For graphs with different motif shapes (causal subparts), we present

the learned operation probabilities for each layer (in expectation)

in Figure 3. The values that are notably higher than others for each
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Figure 2: Results of ablation studies on synthetic datasets,
where ‘w/o L𝑎𝑟𝑐ℎ ’ removes L𝑎𝑟𝑐ℎ from the overall loss in
Eq. (16), ‘w/oL𝑐𝑝𝑟𝑒𝑑 ’ removesL𝑐𝑝𝑟𝑒𝑑 , and ‘w/oL𝑎𝑟𝑐ℎ &L𝑐𝑝𝑟𝑒𝑑 ’
removes both of them. The error bars report the standard
deviations. Besides, the average and standard deviations of
the best-performed baseline on each dataset are denoted as
the dark and light thick dash lines respectively.

layer are highlighted in bold, and the most preferred operators for

each layer are listed in the last row.
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Figure 3: Comparison of operation probabilities for graphs
with different motif shapes.

We observe that different motif shapes indeed prefer different

architectures, e.g., graphs with cycle prefer GAT in the third layer,

while this operator is seldom chosen in neither layer of the other

two types of graphs; the operator distributions are similar for graphs

with cycle and house in the first layer, but differ in other layers. To

be specific, Motif-Cycle is characterized by a closed-loop structure

where each node is connected to two neighbors, displaying both

symmetry and periodicity. For graphs with this motif, CARNAS

identifies SAGE-GCN-GAT as the most suitable architecture. Motif-

House, on the other hand, features a combination of triangular and

quadrilateral structures, introducing a certain level of hierarchy and

asymmetry. For graphs with this shape, CARNAS determines that

GIN-MLP-GCN is the optimal configuration. Lastly, Motif-Crane

presents more complex cross-connections between nodes compared

to the previous two motifs, and CARNAS optimally configures

graphs with it with a GIN-SAGE-GCN architecture.

By effectively integrating various operations and customizing

specific architectures for different causal subparts (motifs) with

diverse features, our NAS-based CARNAS can further improve

OOD generalization.
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(a) Cycle (b) House (c) Crane

Figure 4: Visualization of edge importance for forming causal
subgraphs in SP-Motif Dataset. Structures with deeper colors
mean higher importance.

To better illustrate the learned graph-architecture relationship,

we also visualize the causal subgraphs for each dataset in our case

study in Figure 4.

5.3 Training process
Furthermore, we report both the training loss and validation loss

for the two components (L𝑐𝑎𝑢𝑠𝑎𝑙 , representing the causal-aware

part, and L𝑝𝑟𝑒𝑑 , representing the customized super-network opti-

mization as defined in Equation (16)) in the following settings:

• ‘with Dynamic 𝜎’ means we use the dynamic 𝜎𝑝 in Eq.(17) to

adjust the training key point in each epoch.

• ‘w/o Dynamic 𝜎’ means we fix the 𝜎 in Eq.(16) as a constant

value
𝜎𝑚𝑎𝑥+𝜎𝑚𝑖𝑛

2
.

For the training loss, L𝑝𝑟𝑒𝑑 decreases more steadily and reaches a

lower value with less fluctuation under the dynamic schedule. In

terms of validation loss,L𝑝𝑟𝑒𝑑 with the dynamic schedule decreases

significantly in later stages, whereas without it, L𝑝𝑟𝑒𝑑 struggles

to converge. Additionally, L𝑐𝑎𝑢𝑠𝑎𝑙 without the dynamic schedule

exhibits a slight initial increase before decreasing, whereas with

the dynamic schedule, it decreases smoothly from the outset. These

results indicate that the dynamic schedule effectively adjusts the

training focus during each epoch. It emphasizes the causal-aware
part (i.e., identifying suitable causal subgraphs and learning opera-

tor vectors) in the early stages and shifts focus to the customized
super-network performance in later stages.

Additionally, according to Figure 6, our method can converge
rapidly in 10 epochs. Figure 6 also obviously reflects that after 10

epochs the validation loss with dynamic 𝜎 keeps declining and

its accuracy continuously rising. However, in the setting without

dynamic 𝜎 , the validation loss may rise again, and accuracy cannot

continue to improve. These results verify our aim to adopt this 𝜎𝑝
to elevate the efficiency of model training in the way of dynamically

adjusting the training key point in each epoch.

We also illustrate the efficiency of CARNAS, we provide a direct

comparison with the best-performed NAS baseline, DCGAS, based

on the total runtime for 100 epochs. As shown in Table 3, CAR-

NAS consistently requires less time across different datasets while

achieving superior best performance, demonstrating its enhanced

efficiency and effectiveness.

Table 3: Comparison of runtime

Method SPMotif HIV BACE SIDER

DCGAS 104 min 270 min 12 min 11 min

CARNAS 76 min 220 min 8 min 8 min

6 Related Work
6.1 Graph neural architecture search
In the rapidly evolving domain of automatic machine learning,

Neural Architecture Search (NAS) represents a groundbreaking

shift towards automating the discovery of optimal neural network

architectures. This shift is significant, moving away from the tra-

ditional approach that heavily relies on manual expertise to craft

models. NAS stands out by its capacity to autonomously identify

architectures that are finely tuned for specific tasks, demonstrating

superior performance over manually engineered counterparts. The

exploration of NAS has led to the development of diverse strate-

gies, including reinforcement learning (RL)-based approaches [14],

evolutionary algorithms-based techniques [29], and methods that

leverage gradient information [28]. Among these, graph neural

architecture search has garnered considerable attention.

The pioneering work of GraphNAS [8] introduced the use of RL

for navigating the search space of graph neural network (GNN)

architectures, incorporating successful designs from the GNN lit-

erature such as GCN, GAT, etc. This initiative has sparked a wave

of research [8–10, 35–39, 44, 49, 63], leading to the discovery of

innovative and effective architectures. Recent years have seen a

broadening of focus within Graph NAS towards tackling graph

classification tasks, which are particularly relevant for datasets

comprised of graphs, such as those found in protein molecule stud-

ies. This research area has been enriched by investigations into

graph classification on datasets that are either independently identi-

cally distributed [44] or non-independently identically distributed,

with [2, 37, 52] being notable examples of latter. Through these

efforts, the field of NAS continues to expand its impact, offering

tailored solutions across a wide range of applications and datasets.

6.2 Graph out-of-distribution generalization
In the realm of machine learning, a pervasive assumption posits

the existence of identical distributions between training and test-

ing data. However, real-world scenarios frequently challenge this

assumption with inevitable shifts in distribution, presenting signif-

icant hurdles to model performance in out-of-distribution (OOD)

scenarios [57, 58, 60]. The drastic deterioration in performance

becomes evident when models lack robust OOD generalization ca-

pabilities, a concern particularly pertinent in the domain of Graph

Neural Networks (GNNs), which have gained prominence within

the graph community [21, 43, 59]. Several noteworthy studies [19,

22, 23, 46, 47] have tackled this challenge by focusing on identi-

fying environment-invariant subgraphs to mitigate distribution

shifts. These approaches typically rely on pre-defined or dynami-

cally generated environment labels from various training scenar-

ios to discern variant information and facilitate the learning of

invariant subgraphs. [45, 55] have divided recent literature that
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Figure 5: Changes of the two parts of loss.
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Figure 6: Training process of synthetic datasets.

solve the graph OOD generalization problem, into three categories:

Graph augmentation methods [54] enhance OOD generalization by

increasing the quantity and diversity of training data through sys-

tematic graph modifications. The second type of methods [20, 31]

develop new graph models to learn OOD-generalized representa-

tions. The third type of methods [56] enhance OOD generalization

through tailored training schemes with specific objectives and con-

straints. There are various datasets and benchmarks [11, 15] help

for assessing generalizability and adaptability. Moreover, the ex-

isting methods usually adopt a fixed GNN encoder in the whole

optimization process, neglecting the role of graph architectures

in out-of-distribution generalization. In this paper, we focus on

automating the design of generalized graph architectures by dis-

covering causal relationships between graphs and architectures,

and thus handle distribution shifts on graphs.

6.3 Causal learning on graphs
The field of causal learning investigates the intricate connections

between variables [24–26, 34], offering profound insights that have

significantly enhanced deep learning methodologies. Leveraging

causal relationships, numerous techniques have made remarkable

strides across diverse computer vision applications. Recent research

has delved into the realm of graphs [61, 62]. For instance, [47]

implements interventions on non-causal components to generate

representations, facilitating the discovery of underlying graph ratio-

nales. [7] decomposes graphs into causal and bias subgraphs, miti-

gating dataset biases. [27] introduces invariance into self-supervised

learning, preserving stable semantic information. [4] ensures out-of-

distribution generalization by capturing graph invariance. However,

these methods adopt a fixed GNN architecture in the optimization

process, neglecting the role of architectures in causal learning on

graphs. In contrast, in this paper, we focus on handling distribu-

tion shifts in the graph architecture search process from the causal

perspective by discovering the causal relationship between graphs

and architectures.

7 Conclusion
In this paper, we focus on tackling distribution shifts in graph neu-

ral architecture search (Graph NAS) from the causal perspective.

While existing methods have shown promise in designing graph

neural network architectures, they often struggle with distribution

shifts between training and testing sets, since the correlations be-

tween graphs and architectures they exploit may be spurious and

varying across distributions. To mitigate this issue, we introduce a

novel approach, Causal-aware Graph Neural Architecture Search

(CARNAS), which focuses on discerning stable causal structures

and their relationship with architectures during the architecture

search process. Specifically, we propose three key modules, includ-

ing Disentangled Causal Subgraph Identification, Graph Embedding

Intervention, and Invariant Architecture Customization, which are

able to effectively identify and leverage the causal relationships

between graph structures and architectures to search generalized

graph neural architectures. Our extensive experiments on synthetic

and real-world datasets demonstrate that CARNAS achieves su-

perior out-of-distribution generalization ability, highlighting the

importance of incorporating causal awareness into the graph neural

architecture search process.
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A Theoretical Analysis
In this section, in order to more rigorously establish our method,

we provide a theoretical analysis about the problem of identifying

and leveraging causal graph-architecture relationship to find the

optimal architecture.

To begin with, since causal relationships are, by definition, in-

variant across environments, we make the below assumption on

our causal invariant subgraph generator 𝑓𝐶 (𝐺) = 𝐺𝑐 : G −→ G𝑐 ,
following previous literature on invariant learning [23, 41].

Assumption 1. There exists an optimal causal invariant subgraph
generator 𝑓𝐶 (𝐺) satisfying: (1) Invariance property: For all 𝑒, 𝑒′ ∈
supp(E), 𝑃𝑒 (𝐴∗ |𝑓𝐶 (𝐺)) = 𝑃𝑒

′ (𝐴∗ |𝑓𝐶 (𝐺)). (2) Sufficiency property:
𝐴∗ = 𝑓𝐴 (𝑓𝐶 (𝐺)) + 𝜖 , where 𝑓𝐴 (·) customizes the GNN architecture
from a graph, 𝜖 ⊥ 𝐺 (indicating statistical independence), and 𝜖 is
random noise.

Invariance assumption indicates that the subgraph generator

𝑓𝐶 (𝐺) is capable of generating invariant subgraphs across differ-

ent environments 𝑒, 𝑒′ ∈ supp(E), where E is a random variable

of all environments. This ensures that the conditional distribu-

tion 𝑃 (𝐴∗ |𝑓𝐶 (𝐺)) remains consistent and unaffected by the envi-

ronment. Sufficiency assumption demonstrates that the subgraph

generated by 𝑓𝐶 (𝐺) has sufficient expressive power to enable pre-

diction of the optimal architecture 𝐴∗. This is achieved through

𝑓𝐴 (·), customizing the GNN architecture from a graph, while the

added random noise 𝜖 is independent of the graph 𝐺 .

Then, how can we get the optimal causal invariant subgraph

generator? Following previous work[23], we can prove that it can

be obtain through maximizing 𝐼 (𝐴∗; 𝑓𝐶 (𝐺)), i.e. the mutual infor-

mation between optimal architecture and the generated subgraph.

Theorem 1 (Optimal Generator of Causal Subgraphs). A
generator 𝑓𝐶 (𝐺) is the optimal generator that satisfies Assumption 1
if and only if it is the maximal causal subgraph generator, i.e.,

𝑓 ∗𝐶 = arg max

𝑓𝐶 ∈FE
𝐼 (𝐴∗; 𝑓𝐶 (𝐺)), (18)

where FE is the subgraph generator set with related to the random vec-
tor of all environments, and 𝐼 (·; ·) is the mutual information between
the optimal architecture 𝐴∗ and the generated causal subgraph.

Proof. Let ˆ𝑓𝐶 = argmax𝑓𝐶 ∈FE 𝐼 (𝐴
∗
; 𝑓𝐶 (𝐺 ) ) . From the invariance prop-

erty in Assumption 1, it follows that 𝑓 ∗
𝐶
∈ FE . To prove the theorem, we

show that: 𝐼 (𝐴∗; ˆ𝑓𝐶 (𝐺 ) ) ≤ 𝐼 (𝐴∗; 𝑓 ∗𝐶 (𝐺 ) ), which implies
ˆ𝑓𝐶 = 𝑓 ∗

𝐶
. Using

the functional representation lemma [6], any random variable 𝑋2 can be

expressed as a function of another random variable 𝑋1 and an independent

random variable 𝑋3. Applying this to 𝑓 ∗
𝐶
(𝐺 ) and ˆ𝑓𝐶 (𝐺 ) , there exists a

𝑓 ′
𝐶
(𝐺 ) such that 𝑓 ′

𝐶
(𝐺 ) ⊥ 𝑓 ∗

𝐶
(𝐺 ) and ˆ𝑓𝐶 (𝐺 ) = 𝛾 (𝑓 ∗𝐶 (𝐺 ), 𝑓

′
𝐶
(𝐺 ) ) , where

𝛾 ( ·) is a deterministic function. Then, the mutual information can be de-

composed as follows:

𝐼 (𝐴∗; ˆ𝑓𝐶 (𝐺 ) ) = 𝐼 (𝐴∗;𝛾 (𝑓 ∗𝐶 (𝐺 ), 𝑓
′
𝐶 (𝐺 ) ) ) ≤ 𝐼 (𝐴

∗
; 𝑓 ∗𝐶 (𝐺 ), 𝑓

′
𝐶 (𝐺 ) )

= 𝐼 (𝑓𝐴 (𝑓 ∗𝐶 (𝐺 ) ) ; 𝑓
∗
𝐶 (𝐺 ), 𝑓

′
𝐶 (𝐺 ) )

= 𝐼 (𝑓𝐴 (𝑓 ∗𝐶 (𝐺 ) ) ; 𝑓
∗
𝐶 (𝐺 ) ) = 𝐼 (𝐴

∗
; 𝑓 ∗𝐶 (𝐺 ) ),

(19)

which completes the proof.

Since maximizing 𝐼 (𝐴∗; 𝑓𝐶 (𝐺)) is difficult, we transform it into

another way which will be introduced in later passage.

Next, we show the theorem that guide us to optimize the model,

represented as 𝑄 , that can construct optimal architecture 𝐴∗ for
graph instance 𝐺 under distribution shifts. The prediction is based

on the causal subgraph 𝐺∗𝑐 , which delineates the causal graph-

architecture relationship. We denote the conditional distribution

modeled by 𝑄 as 𝑞(𝐴∗ |𝐺∗𝑐 ).

Theorem 2. Let 𝑓 ∗
𝐶

be the optimal causal invariant subgraph
generator from Assumption 1, and let 𝐺∗𝑐 = 𝑓 ∗

𝐶
(𝐺) and 𝐺∗𝑠 = 𝐺 \𝐺∗𝑐 .

Then, we can get the optimal model 𝑄 under distribution shifts by
minimizing the following objective:

minE
[
log

𝑝 (𝐴∗ |𝐺∗𝑐 )
𝑞(𝐴∗ |𝐺∗𝑐 )

]
+ 𝐼 (𝐺∗𝑠 ;𝐴∗ |𝐺∗𝑐 ). (20)

Here, 𝐼 (𝐺∗𝑠 ;𝐴∗ |𝐺∗𝑐 ) quantifies the spurious correlation between 𝐺∗𝑠
and 𝐴∗, which the model need to ignore, and the first term ensures
that 𝑞(𝐴∗ |𝐺∗𝑐 ) closely matches 𝑝 (𝐴∗ |𝐺∗𝑐 ).

Proof. From the sufficiency assumption of 𝑓 ∗
𝐶

in Assumption 1, we

know that: 𝐴∗ = 𝑓𝐴 (𝑓𝐶 (𝐺 ) ) + 𝜖, where 𝜖 ⊥ 𝐺 . This implies that 𝐴∗ is
conditionally independent of𝐺∗𝑠 (i.e., the non-causal subgraph) given𝐺∗𝑐 .
Therefore, the full graph 𝐺 = (𝐺∗𝑐 ,𝐺∗𝑠 ) satisfies: 𝑃 (𝐴∗ |𝐺 ) = 𝑃 (𝐴∗ |𝐺∗𝑐 ) .
Additionally, by the invariance property, for any 𝑒, 𝑒′ ∈ supp(E) , the

https://doi.org/10.1145/3701988
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conditional distribution of 𝐴∗ given𝐺∗𝑐 remains invariant across environ-

ments: 𝑃𝑒 (𝐴∗ |𝐺∗𝑐 ) = 𝑃𝑒
′ (𝐴∗ |𝐺∗𝑐 ) . This invariance guarantees that𝑄 will

generalize well under distribution shifts caused by changes in the envi-

ronment, when 𝑞 (𝐴∗ |𝐺∗𝑐 ) approximates the stable 𝑝 (𝐴∗ |𝐺∗𝑐 ) . To approx-

imate 𝑝 (𝐴∗ |𝐺∗𝑐 ) with 𝑞 (𝐴∗ |𝐺∗𝑐 ) , we minimize the negative conditional

log-likelihood of the observed data: −ℓ = −∑𝑛
𝑖=1 log𝑞 (𝐴∗𝑖 |𝐺∗𝑐𝑖 ) . Expand-

ing this objective using𝐺 = (𝐺∗𝑐 ,𝐺∗𝑠 ) , we rewrite it as:

−ℓ =
𝑛∑︁
𝑖=1

log

𝑝 (𝐴∗
𝑖
|𝐺∗𝑐𝑖 )

𝑞 (𝐴∗
𝑖
|𝐺∗𝑐𝑖 )

+
𝑛∑︁
𝑖=1

log

𝑝 (𝐴∗
𝑖
|𝐺𝑖 )

𝑝 (𝐴∗
𝑖
|𝐺∗𝑐𝑖 )

−
𝑛∑︁
𝑖=1

log𝑝 (𝐴∗𝑖 |𝐺𝑖 ) (21)

= E
[
log

𝑝 (𝐴∗ |𝐺∗𝑐 )
𝑞 (𝐴∗ |𝐺∗𝑐 )

]
+ E

[
log

𝑝 (𝐴∗ |𝐺 )
𝑝 (𝐴∗ |𝐺∗𝑐 )

]
− E

[
log𝑝 (𝐴∗ |𝐺 )

]
. (22)

The third term is irreducible constant inherent in the dataset, so we omit

it when optimizing. Then, we decompose𝐺 into (𝐺∗𝑐 ,𝐺∗𝑠 ) and rewrite the

second term as:

E
[
log

𝑝 (𝐴∗ |𝐺 )
𝑝 (𝐴∗ |𝐺∗𝑐 )

]
= E

[
log

𝑝 (𝐴∗ |𝐺∗𝑐 ,𝐺∗𝑠 )
𝑝 (𝐴∗ |𝐺∗𝑐 )

]
(23)

=

𝑛∑︁
𝑖=1

𝑝 (𝐺∗𝑐𝑖 ,𝐺
∗
𝑠𝑖
, 𝐴∗𝑖 ) log

𝑝 (𝐴∗
𝑖
|𝐺∗𝑐𝑖 ,𝐺

∗
𝑠𝑖
)

𝑝 (𝐴∗
𝑖
|𝐺∗𝑐𝑖 )

(24)

=

𝑛∑︁
𝑖=1

𝑝 (𝐺∗𝑐𝑖 ,𝐺
∗
𝑠𝑖
, 𝐴∗𝑖 ) log

𝑝 (𝐴∗
𝑖
|𝐺∗𝑐𝑖 ,𝐺

∗
𝑠𝑖
)𝑝 (𝐺∗𝑠𝑖 |𝐺

∗
𝑐𝑖
)

𝑝 (𝐴∗
𝑖
|𝐺∗𝑐𝑖 )𝑝 (𝐺

∗
𝑠𝑖
|𝐺∗𝑐𝑖 )

(25)

=

𝑛∑︁
𝑖=1

𝑝 (𝐺∗𝑐𝑖 ,𝐺
∗
𝑠𝑖
, 𝐴∗𝑖 ) log

𝑝 (𝐺∗𝑠𝑖 , 𝐴
∗
𝑖
|𝐺∗𝑐𝑖 )

𝑝 (𝐴∗
𝑖
|𝐺∗𝑐𝑖 )𝑝 (𝐺

∗
𝑠𝑖
|𝐺∗𝑐𝑖 )

= 𝐼 (𝐺∗𝑠 ;𝐴∗ |𝐺∗𝑐 ) . (26)

Thus, the final objective to optimize 𝑞 (𝐴∗ |𝐺∗𝑐 ) is: minE
[
log

𝑝 (𝐴∗ |𝐺∗𝑐 )
𝑞 (𝐴∗ |𝐺∗𝑐 )

]
+

𝐼 (𝐺∗𝑠 ;𝐴∗ |𝐺∗𝑐 ), where the second term, 𝐼 (𝐺∗𝑠 ;𝐴∗ |𝐺∗𝑐 ) , measures the residual

spurious correlation between𝐺∗𝑠 and𝐴
∗
given𝐺∗𝑐 . This concludes the proof.

However, this objective is challenging to optimize directly in

practice. To address this, we analyze each term intuitively and

explain how our method is derived from the theorem.

The first term, E
[
log

𝑝 (𝐴∗ |𝐺∗𝑐 )
𝑞 (𝐴∗ |𝐺∗𝑐 )

]
, ensures that the model accu-

rately approximates the true conditional distribution 𝑝 (𝐴∗ |𝐺∗𝑐 )
based on the causal subgraph𝐺∗𝑐 . Since the optimal architecture 𝐴∗

is defined as the one achieving the best predictive performance on

label 𝑌 , we indirectly optimize the first term E
[
log

𝑝 (𝐴∗ |𝐺∗𝑐 )
𝑞 (𝐴∗ |𝐺∗𝑐 )

]
by

focusing on label’s prediction performance. Specifically, we min-

imize L𝑝𝑟𝑒𝑑 (Equation 14), which measures the loss between the

ground-truth label and the prediction from the learned optimal

architecture 𝐴∗/𝐴𝑐 . This surrogate loss guides 𝑞(𝐴∗ |𝐺∗𝑐 ) to approx-
imate 𝑝 (𝐴∗ |𝐺∗𝑐 ), as 𝐴∗ is inherently tied to the optimal predictive

performance on final task.

The second term 𝐼 (𝐺∗𝑠 ;𝐴∗ |𝐺∗𝑐 ) represents the conditional mutual

information between the optimal architecture 𝐴∗ and the spuri-

ous subgraph 𝐺∗𝑠 , given the causal subgraph 𝐺∗𝑐 . Minimizing this

term encourages the model to reduce its reliance on the spuri-

ous subgraph 𝐺∗𝑠 when predicting the optimal architecture, given

𝐺∗𝑐 . This motivates the use of L𝑎𝑟𝑐ℎ in Equation 15, which mea-

sures the variance of simulated architectures corresponding to

intervention graphs formed by combining the causal subgraph

with different spurious subgraphs. By reducing this variance, the

model is encouraged to rely solely on the causal subgraph 𝐺∗𝑐 for
determining the optimal architecture, ensuring that the causal sub-

graph has a stable and consistent predictive capability across vary-

ing spurious components in input graph 𝐺 . Then, we prove that

𝐼 (𝐺∗𝑠 ;𝐴∗ |𝐺∗𝑐 ) = 𝐼 (𝐺 ;𝐴∗) − 𝐼 (𝐺∗𝑐 ;𝐴∗):

Proof. By the chain rule of mutual information, we have

𝐼 (𝐺 ;𝐴∗ ) = 𝐼 (𝐺∗𝑐 ,𝐺∗𝑠 ;𝐴∗ ) = 𝐼 (𝐺∗𝑐 ;𝐴∗ ) + 𝐼 (𝐺∗𝑠 ;𝐴∗ |𝐺∗𝑐 ), (27)

where𝐺 = (𝐺∗𝑐 ,𝐺∗𝑠 ) . Rearranging the equation, we obtain
𝐼 (𝐺∗𝑠 ;𝐴∗ |𝐺∗𝑐 ) = 𝐼 (𝐺 ;𝐴∗ ) − 𝐼 (𝐺∗𝑐 ;𝐴∗ ) . (28)

Thus, minimizing 𝐼 (𝐺∗𝑠 ;𝐴∗ |𝐺∗𝑐 ) in turn encourages maximizing

𝐼 (𝐴∗; 𝑓𝐶 (𝐺)), which proved to lead to optimizing the causal sub-

graph generator in Theorem 1.

Therefore, we propose to jointly optimize causal graph - ar-
chitecture relationship and architecture search by offering an

end-to-end training strategy for extracting and utilizing causal

relationships between graph data and architecture, which is stable

under distribution shifts, during the architecture search process,

thereby enhancing the model’s capability of OOD generalization.

B Reproducibility details
B.1 Datasets details
We utilize synthetic SPMotif datasets, which are characterized by

three distinct degrees of distribution shifts, and three different real-

world datasets, each with varied components, following previous

works [37, 47, 52]. Based on the statistics of each dataset as shown

in Table 4, we conducted a comprehensive comparison across vari-
ous scales and graph sizes. The real-world datasets are 3 molecular

Table 4: Statistics for different datasets.

Graphs Avg. Nodes Avg. Edges

ogbg-molhiv 41127 25.5 27.5

ogbg-molsider 1427 33.6 35.4

ogbg-molbace 1513 34.1 36.9

SPMotif-0.7/0.8/0.9 18000 26.1 36.3

property prediction datasets in OGB [13], and are adopted from

the MoleculeNet [48]. Each graph represents a molecule, where

nodes are atoms, and edges are chemical bonds. The division of the

datasets is based on scaffold values, designed to segregate molecules

according to their structural frameworks, thus introducing a signif-

icant challenge to the prediction of graph properties.

B.2 Detailed hyper-parameter settings
We fix the number of latent features 𝑄 = 4 in Eq. (4), number of

intervention candidates 𝑁𝑠 as batch size in Eq. (10), 𝜎𝑚𝑖𝑛 = 0.1,

𝜎𝑚𝑎𝑥 = 0.7, 𝑃 = 100 in Eq. (17), and the tuned hyper-parameters

for each dataset are as in Table 5.

Table 5: Hyper-parameter settings

Dataset

𝑡 in

Eq. (6)

𝜇 in

Eq. (10)

𝜃1 in

Eq. (16)

𝜃2 in

Eq. (16)

SPMotif-0.7/0.8/0.9 0.85 0.26 0.36 0.010

ogbg-molhiv 0.46 0.68 0.94 0.007

ogbg-molsider 0.40 0.60 0.85 0.005

ogbg-molbace 0.49 0.54 0.80 0.003
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